
by Leon Adato
& Patrick Hubbard

Get SolarWinds alerts into Slack
in about 5 minutes (give or take)

THE INCOMPLETE GUIDE TO INTEGRATING
SOLARWINDS ORION INTO SLACK

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

2

WELCOME
WHAT IS THIS GUIDE ABOUT?

This book will help you integrate two of the most amazing tools ever conceived of

by the human mind: SolarWinds and Slack (we may be exaggerating just a bit, but

you’ll have to forgive our enthusiasm). Follow along with us to the end, and what

you’ll have is a system where alerts from SolarWinds will auto-magically appear in

one (or more) channels in Slack, allowing teams to view in real-time, search through

past events, and interact with those alerts to find out more information or even ac-

knowledge them back in the SolarWinds system.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

3

TABLE OF CONTENTS

Welcome 2

What is this guide about 2

Table of Contents 3

All About 5

About the Authors 5

Leon Adato 5

Patrick Hubbard 5

About Slack 5

About SolarWinds 6

About You 6

What you should already know 6

Getting Started 8

What you’ll need to get this done 8

The Nitty Gritty 9

Overview 9

Step 1: Initial Setup 10

Set up Slack 10

Troubleshooting 12

Set up cURL 13

Troubleshooting 14

Step 2: Set up your first alert 16

A brief word about the “test” button 17

Troubleshooting 19

Step 3a: Add an action using cURL 20

Everything You Always Wanted to Know About the cURL Command 21

A Picture is Worth… 23

Test Early, Test Often 25

Troubleshooting 25

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

4

Step 3b: Add an action using PowerShell (using cURL) 29

Why This Matters 29

Let’s Do This 29

Troubleshooting 33

Step 3c: Add an action using PowerShell (the right way) 34

So what do we have against cURL? 34

You Sold Me. Where Do I Sign? 34

Troubleshooting 38

The Case against Orion’s Native GET or POST Request Action 39

So what do we have against the built-in POST action? 39

Troubleshooting 41

Advanced REST and Orion Alert Integration 42

Robust & Maintainable Code 42

A Fully Armed and Operational Battle Station 44

It’s Way Easier than You Think 45

Time to Test– Hit It! 50

Troubleshooting 53

A Final Word on Alerts 54

Let’s be smart, here, people! 54

Wrapping Up 56

Take a moment to reflect 56

What's Next? 56

Dedications 57

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

5

ALL ABOUT
ABOUT THE AUTHORS

Leon Adato

Leon Adato is a Head Geek™ and technical evangelist at SolarWinds, and is a Cisco®

Certified Network Associate (CCNA®), MCSE and SolarWinds Certified Professional®.

His experience spans financial, healthcare, food and beverage, and other industries.

Before he was a SolarWinds Head Geek, Adato was a SolarWinds user for over a

decade. His expertise in IT began in 1989 and has led him through roles in classroom

training, desktop support, server support, and software distribution.

Leon’s essays can be found anywhere they will let him post, as well as on Twitter® as

@LeonAdato, and on solarwinds.com.

Patrick Hubbard

Patrick Hubbard is a Head Geek and technical product marketing director at Solar-

Winds. With over 20 years of IT experience spanning network management, data

center, storage networks, VoIP, virtualization, and more. Hubbard’s career in tech-

nology began with in the technogenesis of skunkworks IT at American Airlines®.

Since then, his career has included product management and strategy, technical

evangelism, sales engineering and software development. Hubbard’s focus is appli-

cation and service delivery for startups and Fortune 500® companies alike that span

high tech, transportation, financial services and telecom industries.

You can find Patrick’s thoughts strewn across the internet like seeds on the Ethernet

winds, on Twitter as @FerventGeek, or on solarwinds.com.

ABOUT SLACK

Slack is a web-based tool that facilitates team communication. More than a simple

instant messenger client, Slack allows teams to share not only text messages, but also

files, images, documents and more. Anything that is shared can be commented on,

updated, indexed for searching, and synchronized to other web services.

https://twitter.com/leonadato
http://www.solarwinds.com
https://twitter.com/ferventgeek
http://www.solarwinds.com

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

6

Finally, Slack is extremely customizable. It supports hooks for external functions

like stock market lookups, sales lead management, curation of cute cat videos,

and even alerts from monitoring systems.

Which brings us to our next point:

ABOUT SOLARWINDS

SolarWinds is nothing more or less than the greatest monitoring, management,

and automation solution in the world. How can we be so sure? 150,000 IT Pros

have told us so—they’ve voted both with words and cold-hard cash. Started in 1998

by 18 employees in Tulsa, OK, with the idea that all the tools a network engineer

needs should be in one place and accessed through a simple interface. The

company has grown to thousands of employees in dozens of locations, providing

dozens of amazing tools to IT professionals of all stripes and specializations

ABOUT YOU

If you were sitting at your desk thinking, “I love the alerts I’m getting in SolarWinds,

but I wish I could get them in Slack, where my whole team could see them and

respond collaboratively,” then you, my friend have some pretty strange thoughts

and maybe you should get up from that desk every once in a while.

Also, this book is for you.

Also, you DEFINITELY can be our friend. Because we were thinking the same thing.

Only, we decided to take a shot at it and see if we could make such a crazy idea

happen.

What you should already know:

Before we dig into this, there are a few things that we’re assuming you know about,

or know how to do. We’re not trying to be elitist or anything, it’s just that if you

aren’t comfortable with the skills we list below, you’re going to find a lot of the

concepts – let alone tasks – to be frustrating.

That’s not to say you’re out of luck. We happen to know a community of folks who

are more than willing to help guide you in your journey.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

7

Head over to thwack.com and start reading forum posts, asking questions, and

rubbing elbows with people from across the world who have been EXACTLY in

your position (for some folks, it wasn’t even that long ago!) and who would love to

help shepherd you along.

So take heart, young Padawan! When the student is ready, the teacher will appear!

With all of that said, here’s what you ought to be comfortable with:

•	 Generally moving around in Slack

•	 Generally moving around in SolarWinds

•	 Creating and modifying alerts in SolarWinds you don’t have to be an expert,

just generally familiar

•	 Working in the Windows® command prompt (i.e. the DOS-ish prompt)–Sorry

if this one feels like a bit of a bummer, but this is one of those times when CLI

(command line interface) is where the magic is going to happen.

•	 PowerShell™–You don’t have to be a PowerShell guru, but you ought to know

what it is, how to get into the PowerShell command prompt (there’s that CLI

again!), and have a decent sense of the PowerShell programming syntax.

http:/www.thwack.com

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

8

GETTING STARTED
WHAT YOU’LL NEED TO GET THIS DONE:

Now we just listed out skills or areas of knowledge, but there are a few specific

THINGS (such as software, accounts, and access) you will need as well:

•	 A working SolarWinds installation–This can be any “standalone” module, NPM,

SAM, NCM, IPAM, UDT etc. An account on that working SolarWinds installation

that can create and edit alerts

•	 Access (i.e. RDP) to the SolarWinds primary poller

•	 An account on the SolarWinds primary poller that lets you install software

•	 PowerShell installed on the SolarWinds primary poller (if it’s not Windows

2008 or newer, where PowerShell is automatically included you may need

to install it)

•	 Access to slack.com via port 80 from the poller where alerts will originate

•	 A Slack account

•	 A Slack group that has read/write permission to at least one channel

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

9

THE NITTY GRITTY
OVERVIEW

After all the fanfare, we’re finally THERE. We’re going to get it done. Like any

good journey, the first thing you’ll want to do is review the stops along the way,

so that you don’t get lost.

At a very high level, here’s what we’re going to do:

1.	 	Configure a “webhook” on a Slack channel

2.	 	Install and test cURL® on the SolarWinds primary poller

3.	 	Create a new alert in SolarWinds Orion

4.	 	Add an Orion alert action that calls cURL

5.	 	Add an Orion alert action that calls a PowerShell script which wraps cURL

6.	 	Add an Orion alert action that calls a PowerShell script that does it the Right Way

7.	 	Bask in the glory of your own genius

8.	 	Lather, rinse, and repeat for greater glory

Please note that step 7 is absolutely required, 8 is highly recommended.

Also note that steps 4, 5, and 6 are actually variations of the same step (set up an

alert action) with increasing levels of sophistication. If you are REALLY confident in

your skills—you know, the kind of person who does math problems and crossword

puzzles in pen rather than pencil—then feel free to jump straight to 6.

But we think that going through ALL the steps has value. Remember that it’s the

journey, not the destination that matters most.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

10

STEP 1: INITIAL SETUP

Set up Slack

TRAP: Remember, you need to have a Slack account that has admin (i.e. Read-

Write) permission to the channel where you want to send messages.

1.	 	On an actual computer or VM–not a phone, iWhatever, or Android device- log

in to Slack in your web browser. (go to https://slack.com and click “Sign In”)

2.	 Next, go to the webhooks admin page https://api.slack.com/incoming-web-

hooks. You don’t actually NEED to go to this page, you can just skip to the link

in step 3. But this is an INSANELY useful page, so we wanted you to see this first.

Our apologies for the subterfuge and occasional caps lock.

3.	 Click “incoming webhook integration” (https://my.slack.com/services/new/

incoming-webhook)

4.	 	From the drop-down, select the channel where you want SolarWinds alert

messages to appear, and click the “Add Incoming Webhooks Integration” button.

5.	 Slack will helpfully notify you either the web browser or the mobile app

that a new webhook has been created. Notice a theme emerging here-

instant notification in a stream you’re already watching.

https://slack.com/
https://api.slack.com/incoming-webhooks
https://api.slack.com/incoming-webhooks
https://my.slack.com/services/new/incoming-webhook/
https://my.slack.com/services/new/incoming-webhook/

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

11

6.	 In the web page, you will see a screen that gives you a specific URL. This is

effectively an endpoint you will send all your messages to, which will then inject

them in the channel on Slack. Copy that URL and save it somewhere for later.

7.	 Examine the options on this page to customize your new webhook. You can

give it a different name, change the icon that displays when a new message

comes in, and lots more.

8.	 	Once you’ve fiddled with those options a bit, click “Save Settings” at the

bottom of the page.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

12

Troubleshooting

Most of the troubleshooting at this point will be if you pick the wrong channel,

or lose the URL, or something minor like that.

To fix any of these issues (or more), go back to https://my.slack.com/services/

new/incoming-webhook.

Now look at the top of the page, where the “breadcrumbs” are located, and click

the “Incoming Webhooks”:

You’ll see a page with any of the Slack teams you are logged into. Click “Config-

ure” next to the one we’re setting up today.

Now you’ll see a list of all the webhooks currently in place for your Slack team.

Click the pencil to edit the one which is broken.

https://my.slack.com/services/new/incoming-webhook/
https://my.slack.com/services/new/incoming-webhook/

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

13

You are now BACK at the page where the webhook settings are located. You can

Re-generate a new service URL, copy the existing one, change something that you

don’t like, delete the webhook URL in case you posed it to Facebook® or just enjoy

the view. Ok, we know it sounds weird and slightly creepy, but we try not to judge.

TRICK: Remember that this webhook is Open to the Public, so you may come

back and regenerate the URL more often than you may think right now. If you

intend for this service to remain private, and you don’t want people sending un-

wanted messages to your Slack channel, you will probably go through a few

URLs. Fortunately, there’s a list of all URLs you’ve generated and clicking the edit

pencil icon lets you remove any you regret. Regret!? There’s no regret in DevOps!

Set up cURL

The next thing you need to do is get cURL for Windows installed on the SolarWinds

primary poller:

1.	 	RDP to the SolarWinds primary poller

2.	 	Open a browser and go to http://www.confusedbycode.com/curl/

3.	 	Download the correct version of cURL. You need the one that runs with

Administrator privileges. While we would like to insist that you install the

64-bit version, we leave it to your discretion. However, SolarWinds itself

requires a 64bit system, so why you’d go for 32bit here is beyond us.

NOTE: If you need a copy of Microsoft C++ library, you will be prompted

to download and install it here. Just go with the flow.

4.	 During the install, select advanced and CHOOSE where cURL will be installed.

Pick or create a folder that is a single word because lots of systems don’t like

spaces in path names. Make a note of this path, even go as far as to copy it

into your notes file for ready reference later, for example in step 5.

http://www.confusedbycode.com/curl/

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

14

5.	 Test to make sure cURL is running correctly by going to the DOS prompt,

and yes, it IS called a DOS prompt, not “the command prompt” you baby-

faced youngster! Now hush while we take a sip of Ensure®. Typing the

command “<your path>\curl.exe --help”. For example, if you used our

suggestion and put cURL in C:\sw_tools\cURL\ then you would type:

C:\sw _ tools\curl\bin\curl –help

6.	 Finally, test to make sure cURL running on your system can actually

connect to Slack. At the DOS prompt, type the following line

C:\sw _ tools\curl\bin\curl.exe -X POST --data-urlencode

“payload={\”text\”:\”This is a line of text.\nAnd this is

another one.\”}” https://YOUR _ SLACK _ WEBHOOK _ GOES _ HERE!

Obviously you need to replace “https://YOUR_SLACK_WEBHOOK_GOES_

HERE!!” with your actual webhook. But if all is right with the universe, you

should see a simple message pop up in your Slack channel.

Troubleshooting

There shouldn’t be any troubleshooting during this step. We’re not saying nothing

could possibly go wrong, just that anything that happens is really abnormal, prob-

ably specific to your environment, and unfortunately you are pretty much on your

own to fix it. But, a great first step is to hit something small with cURL first to ensure

it’s not the bits, path or the way you’re calling it.

For that you can certainly use the DOS command prompt, or because we’re going

to be doing all this the Right Way thank-you-very-much by the end of this tutorial,

use a real admin’s tool, PowerShell.

Start a PowerShell prompt, cd to your cURL install folder’s \bin directory and at the

command prompt type curl google.com [Enter]

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

15

Ack! What the heck is that?

Ahh PowerShell, keeping you out of trouble and ensuring you don’t have ambi-

guity in your execute path. And look at the last line, it even tells you it thinks it

knows where it is and suggests adding .\ before curl.exe. So friendly, that Pow-

erShell. Let’s try that again. Type .\curl google.com [Enter]

Ahh much better. If this works for you then cURL is working, and the issue is with

your syntax. See the Everything You Always Wanted To Know About the CURL

Command troubleshooting section for more details.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

16

STEP 2: SET UP YOUR FIRST ALERT

In this step we’re going to set up a fairly simple alert. Because we want to test this

alert a lot, we’re looking for something that we can trigger and then fix, easily and fre-

quently, with extreme prejudice. A monitor which checks your primary internet router

is exactly the worst choice you could make.

In this book, we’re going to go with a simple “interface status has changed” alert be-

cause we have a lab and some gear nobody is using and no one will freak out if we

shutdown interfaces. You could also do something like monitor a single switch port

which you can enable/disable/unplug, or a whole device which you can shut off/re-

start, or any other simple up/down type trigger.

Remember, the point here is not the sophistication of the alert, it’s all about getting

the alert action working.

To set up our alert, we are going to:

1.	 	Go to the Orion web console

2.	 	Go to Settings

3.	 	Go to “Manage Alerts”

4.	 	Start a new alert

5.	 	Set up the name, description, etc. on the first screen

6.	 	In the second screen, we’re going to set a specific node (cur-2851.lab.cur) and

a trigger looking for any time an interface status changes

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

17

For NOW, you can click “next” past the rest of the screens and save the alert. There is

obviously more to do, but we’ll get to that shortly.

A brief word about the “test” button

The test button included in the SolarWinds Orion web-based alert manager is an

amazingly convenient option that calls to many monitoring engineers with the seduc-

tive power of the sirens in “The Odyssey.” And in many cases, the test button works.

However, it has a few drawbacks and we need to make them clear so you don’t trou-

bleshoot problems that aren’t a problem.

As the name implies, the test button will generate a test alert for the trigger you’ve set

up. But the trick here is that there isn’t really a problem to be alerted on, so some parts

of this test alert inevitably go missing or are incomplete and for once as and admin,

that’s perfectly ok.

For example, there’s no “Acknowledge” URL. Why? Because there was no actual alert

triggered, so there’s nothing to acknowledge! If your alert lists “components that are

down,” that list will be blank because as a test alert, none of the components are ac-

tually down. And so on. The goal here is to get something in Slack and test the inte-

gration. Later on we’ll verify the details. Assuming that skeeves you out, how do you

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

18

get around this? Step 1, don’t use the test button. Step 2, set up your alert so that you

can actually trigger it. Step 3, profit. For example, let’s say you want to test “high CPU”

alert that triggers when CPU utilization is over 90%.

First, add criteria that limits your alert to a single machine. That way you don’t end up

triggering 9,000 alerts by accident (don’t laugh, we’ve done it. Twice.).

Next, change the “greater than or equal to 90%” to “less than or equal to 99%.”

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

19

Unless the machine you’ve specifically selected is already having a rough day, this alert

should trigger every single time.

NOW all you have to do is hit the “reset” button, and it will trigger again and again,

until you get your alert actions just the way you want them.

Troubleshooting

While there are a number of things that could potentially go wrong at this phase, none

of them are relevant to the integration of SolarWinds and Slack. For that reason, we’re

going to leave you to your own devices (no pun intended). If you are really stuck, we

strongly recommend going over to thwack.com and posting a question. Trust us, ev-

eryone there is very willing to help out.

http://www.thwack.com

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

20

STEP 3A: ADD AN ACTION USING cURL

And now we finally get down to it – adding the special sauce that will send your

alert messages sailing gracefully into your Slack session.

In this first example, we’re going to use cURL (remember how we installed it back

in step 1?) which is specially designed to programmatically interact with web pages

and then report the results back to the calling program.

In plain English, this means cURL does the same web browser clicking you would

do, and then sends the results back to you as the output. Edit the alert you start-

ed before, and go to the Alert Actions tab. Then click “Add Action” and select

“Execute an External Program”.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

21

Everything You Always Wanted to Know About the cURL Command

Once you are there, you are going give the Alert Action a name, and add a net-

work path value that looks something like this:

PATH _ TO _ CURL\bin\curl.exe -X POST --data-urlencode
“payload={\”channel\”: \”#YOURCHANNEL\”, \”username\”: \”OrionBot\”,
\”text\”: \”Alert - Interface: ${N=SwisEntity;M=Caption}
status changed to ${N=SwisEntity;M=Status}\
nView: <${N=Alerting;M=AlertDetailsUrl}|Details>,
<${N=SwisEntity;M=Node.DetailsUrl}|Node>\nTo acknowledge click
<${N=Alerting;M=AcknowledgeUrl}|here>\”}”,

https://YOUR _ SLACK _ WEBHOOK

OK, that’s a whole lotta stuff, so let’s break this down:

•	 PATH_TO_CURL\bin\curl.exe – This is quite literally, the path to curl.exe on

your system. So if you put it in C:\sw_tools like we did, this line would read:

C:\sw_tools\curl\bin\curl.exe

•	 -X POST – eXecute a “POST” action (meaning send some stuff out, rather

than a “GET” action which pulls web information back.

•	 --data-urlencode – send the information in the same way it would work if

you had clicked a web option on a page.

•	 “payload={ – This tells cURL that the next part (everything between the

quotes) is literally what is going to get sent.

•	 \”channel\”: \”#YOURCHANNEL\”, – this is a variable that Slack wants: the

channel you are sending this into. Plus the actual channel name. Don’t use

“#YOURCHANNEL” unless you have some very weird Slack channel names.

•	 \”username\”: \”OrionBot\”, – When the alert information pops up, this is the

user it will appear to be from. It doesn’t have to be an actual Slack user, so

you can call this anything you like.

•	 \”text\”: \”Alert – Interface: – This marks the beginning of the text of the

message. Everything after \”text\”: is what will show up as the alert. So this

alert starts by saying “Alert – Interface…”.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

22

•	 ${N=SwisEntity;M=Caption} – This has nothing to do with Slack and every-

thing to do with SolarWinds. It’s a SolarWinds SWQL (SolarWinds Query Lan-

guage) variable. In this case, it pulls the interface name out of the SolarWinds

database, and sends it.

•	 status changed to – more literal text

•	 ${N=SwisEntity;M=Status} – another SolarWinds variable, giving the status

of the interface

•	 \n – This is a “hard return”. It means that the message in Slack will start a

new line.

•	 View: – more literal text

•	 <${N=Alerting;M=AlertDetailsUrl}|Details> – This passes a SolarWinds variable

for the URL of the alert details link, but uses the word “Details” as the clickable

part. So in Slack you will simply see the word “Details” but it will be click-able.

•	 <${N=SwisEntity;M=Node.DetailsUrl}|Node> – Similar to the Acknowledge link,

this one says “Node” but is clickable to take you to the Node Details page.

•	 \nTo acknowledge click – More literal text

•	 <${N=Alerting;M=AcknowledgeUrl}|here>\”, – A link to acknowledge this alert

in SolarWinds

•	 	https://YOUR_SLACK_WEBHOOK – This is your Slack webhook URL, which

tells cURL where to send all of this lovely SolarWinds-y goodness.

Epic Copy–Paste

Last you’re going to squeeze a lot of cURL call into a little text box, and appreci-

ate editing big chunks of text in an editor not the web. Of course it lets you back

them up and test more easily, and everyone backs up their work correct?. When

you’ve got your cURL call looking the way you want, paste it into the “Network

path to external program” text box.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

23

Save your changes, click the box to the left of your new execute action in the

action list, click the test button and Hello World, you should see this in the Slack

channel of your choice:

Whew! We know that seems like a lot, but once you run through this a couple of

times it will become very familiar.

A Picture is Worth…

But we want to kick it up just a bit, and add some style. Let’s say that

you want your OrionBot Slack user (who doesn’t really exist) to have

a really cool icon. Something like this, and for the record those are

particles not a flame.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

24

And let’s say you have that icon accessible on the internet here:

http://cool.example.com/slack/orionbot/img/particles.png

You COULD add just one extra variable to make each message show up with that

user icon, like this:

\”icon _ url\”: \” http://cool.example.com/slack/orionbot/img/

particles.png”

Put it all together, and your command would look something like this. For the

sake of argument, we’re going to say the path to cURL is C:\sw_tools, and the

channel is “#labbot”.

C:\sw _ tools\curl\bin\curl.exe -X POST --data-urlencode

“payload={\”channel\”: \”#labbot \”, \”username\”: \”OrionBot\”,

\”text\”: \”Alert - Interface: ${N=SwisEntity;M=Caption}

status changed to ${N=SwisEntity;M=Status}\

nView: <${N=Alerting;M=AlertDetailsUrl}|Details>,

<${N=SwisEntity;M=Node.DetailsUrl}|Node>\nTo acknowledge

click <${N=Alerting;M=AcknowledgeUrl}|here>\”, \”icon _ url\”:

\http://cool.example.com/slack/orionbot/img/particles.png\”}”

https://YOUR _ SLACK _ WEBHOOK

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

25

Test Early, Test Often

After you’ve gotten all of this set up (we recommend putting it all together in a

simple text editor like notepad, or better still in a programmer’s editor like Note-

pad++, Sublime, BlueFish®, or whatever you prefer). The next thing you want to do,

like any good developer, is TEST.

What we mean is, go to the DOS prompt, and execute EXACTLY your command.

Doing this from the DOS prompt will show you key error messages that you

wouldn’t see if you went straight to copy-and-pasting into the SolarWinds alert

trigger box.

You didn’t just jump ahead to that step, did you? Nah, we didn’t think you did.

Honest.

Now, when you test this from the DOS prompt, you aren’t going to get the actual

variables–you know, things like the ACTUAL node name. In Slack, you will see

“${nodename}” instead. But that’s ok because now you know there are no critical

errors.

NOW you should go ahead and paste your code into the SolarWinds alert action,

and save everything.

Depending on how you set things up, either use the test button or (if you read

carefully in the “A Brief Word About the Test Button” section) trigger your alert,

and then use the reset button to keep re-triggering it until everything is working

the way you want.

Troubleshooting

The main problems you may encounter here and going forward will be related to

two issues:

1.	 Basic syntax and general fat-finger-foo

2.	 Bad values passed to Slack

For syntax issues the DOS or PowerShell prompts are your friends if you’re sort-

ing out a double-wrapped, twice-escaped, and once Url encoded CURL call. The

challenge is that even if you turn on verbose logging in Orion, the execute CURL

command will eat a lot of the error detail. The only way to catch it is when you run

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

26

the command in a command window. (And be sure to remember the handy-dan-

dy Log Adjuster in

C:\ProgramData\Microsoft\Windows\Start Menu\Programs\SolarWinds Orion\

Documentation and Support\Log Adjuster.exe).

If you’re getting errors in the Orion Alert test window, or success but no messages

appearing in Slack, first take a look at Orion’s actions execution alert log:

C:\ProgramData\Solarwinds\Logs\Orion\ActionsExecutionAlert.log.

If it’s something basic like a firewall block, Slack webhook root reachability or other

basic transport issues it will be captured there. And if you’re getting “Host not found”

or “Host unreachable”, then Hooray! We’re network admins and that’s super easy to

troubleshoot. Book it, done.

But usually that’s not the problem and what you’ll be limited to is something like this:

2016-02-03 10:17:40,560 [17] ERROR AlertingLogger - Action [Action:
ID: 122, ActionType: SendHttpRequest, Title: Slack Webhook POST
Action, Description: Post to https://hooks.slack.com/services/
T09HUKJH4/B0L6G78HH/jPHdT9gbuMsoq4cCnS5G3xnU, Enabled: True,
Order: 2 , Context: SolarWinds.Orion.Core.Models.Actions.Contexts.
AlertingActionContext, EnviromentType: Alerting, ExecutionMode:
Trigger, EntityType: Orion.NPM.Interfaces, EntityUri: swis://dev-
aus-lada-01./Orion/Orion.Nodes/NodeID=101/Interfaces/InterfaceID=75,
AlertContext: AlertName: 00 _ Slack update on interface status
change, CreatedBy: , AlertActiveId: , AlertObjectId:] execution
has failed.

System.Exception: Failed to execute HTTP request ---> System.Net.
WebException: The remote server returned an error: (500) Internal
Server Error.

at System.Net.HttpWebRequest.GetResponse()

at SolarWinds.Orion.Core.Actions.Impl.SendHttpRequest.
SendHttpRequestExecutor.ExecuteInternal()

 --- End of inner exception stack trace ---

at SolarWinds.Orion.Core.Actions.Impl.SendHttpRequest.
SendHttpRequestExecutor.ExecuteInternal()

at SolarWinds.Orion.Core.Actions.ActionExecutorBase.
Execute(IServiceProvider serviceProvider, ActionDefinition
definition, ActionContextBase context, CancellationToken
cancellationToken)

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

27

“Stack traces?!” you say, “I hate reading stack traces!” <Sighs, gets glasses, reads stack

trace>. Ah, “remote server returned an error: (500) Internal Server Error.” Easy, Slack is

down, right? Nope. Slack is just saying it barfed on what you sent over to it.

So, to get the real nitty gritty from Slack on why it balked, the first place to start

debugging is always the command line, not in the Alert Action box, and of course

we recommend PowerShell. And because you’re debugging with PowerShell, you

get to take advantage of another handy feature–single-quote strings. That crazy

double-escaped string you’re passing to cURL? Just wrap it in single quotes and it

works great. If Slack accepts your POST you’ll see this:

Slack, would it hurt ya to just send back a little meta besides HTTP 200 OK? Slack

webhooks are terse, no joke. If you really want to see what cURL is up to, add the ver-

bose –v parameter and you’ll get this:

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

28

cURL is not at all terse, but confirms that http://hooks.slack.com most certainly is.

But what Slack is great at, and what cURL, (and later on Invoke–WebRequest) will

expose for you, is helpful debugging information when the data you’re sending is bad.

There are lots of ways to mess this up as you experiment but they’re easy to fix, and

then sin no more.

Bad escape syntax often looks like this:

You’ll even see cURL trying to resolve parts of the test in real time, as cURL can’t even

reach Slack. (In this example we forgot to switch our outer POST payload enclosing

double quotes to singles.)

When your call is good but you pass incorrect data to Slack, it tells you what to fix.

Here’s a bad webhook as indicated by “No Team”:

And here’s an invalid channel name:

Slack will also send specific errors for invalid text characters, general JSON property

name problems, and more. In all these cases refer to the Slack developer pages and

you’ll be able to fix them in a jiffy from the command prompt. When you’re good to

go, paste the fixed syntax back into the Alert Execute Action.

If you’re sick of messing with escape characters and wonky string builds, that’s perfectly

normal and why we really recommend using a PowerShell script for this where you can

create JSON the right way, with no cURL, using objects. Read on for an example.

http://hooks.slack.com

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

29

STEP 3B: ADD AN ACTION USING POWERSHELL (USING cURL)

Why This Matters

Doing direct cURL commands from within SolarWinds alerts is… fine. It gets the job

done. HOWEVER, if you later decide you want to add additional fields, or change the

channel, or whatever, you will need to manually change (and test! Never forget you

must test!) each and every alert.

So in this section we’re aiming to accomplish two things:

1.	 Get this running on PowerShell, because PowerShell is cool and all the cool kids

are doing it and you should be doing it too because you want to be cool, right?

2.	 Create a “wrapper” (usually called a “shim” by programmer-types). This is what

you paste into every alert action. The shim has minimal information that it passes

to the real script. The shim will not change.

The real script (which is called by the shim) is a simple text file and can be changed

separately. Changing the script once will affect every single alert that uses it with no

need to update the Orion alert configuration. It’s also extra handy because multiple

alerts can re-use the same Alert Action. Reuse is a beautiful thing.

This is why programmers say that

”Laziness is a virtue.”

Frame that and put it up over your desk.

Let’s Do This

We’re going to work backwards on this. First, we’re going to create the PowerShell

script and make sure it works, then we’re going to update our alert to use the shim.

1.	 If you didn’t create that C:\sw_tools folder when you installed cURL on your

primary poller do it now.

2.	 	In that folder, create a new file called “MySlackOrionAlertSender.ps1.”

3.	 In that file, put (copy/paste or type if you are OCD and/or a masochist) the

following:

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

30

#Define Params to make life easy
param([string[]]$Caption,[string]$Status,[string]$De-
tails,[string]$Node,[string]$AckUrl)

Define varilables
$curl = ‘C:\sw _ tools\curl\bin\curl.exe’$icon = ‘http://cool.example.com/
slack/orionbot/img/particles.png’
$webhook = ‘https://YOUR _ SLACK _ WEBHOOK’
$channel = ‘labbot’
$username = ‘OrionBot’

$myarg = ‘-X POST --data-urlencode “payload={\”channel\”: \”#’ + $chan-
nel + ‘\”, \”username\”: \”’ + $username + ‘\”, \”text\”: \”Alert - ‘ +
$Caption + ‘ status changed to ‘ + $Status + ‘\nView: <’ + $Details +
‘|Details>, <’ + $Node + ‘|Node>\nTo acknowledge click <’ + $AckUrl +
‘|here>\”, \”icon _ url\”: \”’ + $icon + ‘\”}” ‘ + $webhook

Start-Process $curl -ArgumentList $myarg

4.	 	Now let’s break down the code so you understand

•	Anything that starts with a hash/pound symbol (#) is a comment. I’m

not commenting on comments.

•	$curl = ‘C:\sw_tools\curl\bin\curl.exe’ – This sets the location for the

curl command.

•	$icon = ‘http://cool.example.com/slack/orionbot/img/particles.png’–

This sets the image you want to use as the avatar for your Slack user

•	$webhook = ‘https://YOUR_SLACK_WEBHOOK’ – This is your Slack

webhook URL

•	$channel = ‘labbot’ – This is the name of the Slack channel where

your messages should appear

•	$username = ‘OrionBot’ – This is the (fake) “username” that the alerts

will appear to come from

•	$myarg = – This sets up ALL of the arguments that will be passed to

the cURL command. Everything between here and the ending single

quote are argument variables.

•	 ‘-X POST --data-urlencode – Just like with the cURL command in the

last section, this tells cURL to POST the data as a web page.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

31

•	“payload={ – Everything from here to the ending french brace (}) is

the actual set of options that is going to be sent to slack.

•	\”channel\”: \”#’ + $channel – The channel, using the variable we set

earlier

•	+ ‘\”, \”username\”: \”’ + $username – The username, using the variable

we set earlier

•	 ‘\”, \”text\”: ‘ – From here on is the actual text message that will appear

in the Slack window.

•	\”Alert - ‘ + $Caption – The word “Alert” plus the name of the element

that is having a problem.

•	+ ‘ status changed to ‘ + $Status – The words “status changed to” and

the actual status.

•	+ ‘\nView: <’ + $Details + ‘|Details>, – The word “View” and a clickable

link to the alert details.

•	<’ + $Node + ‘|Node> – A clickable link to the Node details.

•	\n – start a new line

•	To acknowledge click <’ + $AckUrl + ‘|here>\”, - The words “To

acknowledge, click” and a clickable link to the acknowledge URL

•	\”icon_url\”: \”’ + $icon – This sets the icon that appears for the

“orionbot” Slack user.

•	+ $webhook – This is your slack webhook URL

•	Start-Process $curl -ArgumentList $myarg – And this is the ACTUAL

command that is run by Powershell.

5.	 Save this file.

6.	 	Now TEST this file. No really, take a minute and test it by just running:

Powershell.exe -File C:\sw_tools\MySlackOrionAlertSender.ps1

CaptainKirk jumpingjacks http://www.google.com

http://www.xkcd.com http://www.solarwinds.com

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

32

7.	 What you should see in slack is a message from OrionBot with the

orionbot icon, that

8.	 Now, back in SolarWinds, you need to go back to that alert

TRICK: We actually think that copying the first alert is better than editing, so

that you have a reference you can use to teach others later.

9.	 In the alert action, paste the following:

Powershell.exe -File C:\sw _ tools\MySlackOrionAlertSender.
ps1 “${N=SwisEntity;M=Caption}” “${N=SwisEntity;M=Status}”
“${N=Alerting;M=AlertDetailsUrl}” “${N=SwisEntity;M=Node.
DetailsUrl}” “${N=Alerting;M=AcknowledgeUrl}”

10.		And once again, let’s break this down:

•	 	Powershell.exe – This invokes PowerShell

•	 	-File C:\sw_tools\MySlackOrionAlertSender.ps1 – This tells PowerShell

to run the “MySlackOrionSender.ps1” script, with the following

variables.

•	 	“${N=SwisEntity;M=Caption}” – The name of the system

•	 	“${N=SwisEntity;M=Status}” – The status of the system

•	 	“${N=Alerting;M=AlertDetailsUrl}” – The alert details URL

•	 	“${N=SwisEntity;M=Node.DetailsUrl}” – The…

You know what? You’re probably pretty sharp and we bet you can figure out

the rest from here. You are sending the variables into the script, which then

get processed and placed into a coherent message for Slack, right?

Right. Let’s move on.

Actually, there isn’t much “on” to move. Once you’ve pasted that line into your

alert, you should test it.

A lot.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

33

Troubleshooting

The biggest issue you’re likely to encounter is calling the script correctly inside the

Alert action. Make sure that these three things are working from the <cough> DOS

command window.

1.	 	The path to PowerShell is correct. If it’s Powershell.exe searching the system

path incorrectly or with a broken definition, it will cause problems. Try using the

full path to the exact copy of PowerShell you prefer on the system. This is also a

great way to select a specific version when there are several installed.

2.	 The path to the script is correct. If Powershell.exe doesn’t know where to look,

that’s a problem.

3.	 You’re not passing a wonky parameter to the script. This is a simple position

based example, but there are other ways, including named parameter pass-

ing that may help. Google® passing parameters to PowerShell scrips for tips

and examples.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

34

STEP 3C: ADD AN ACTION USING POWERSHELL (THE RIGHT WAY)

i.e. NOT using cURL

So what do we have against cURL?

Nothing. cURL is a perfectly lovely, a perfectly functional way to get stuff out of a pro-

gram and into a web-exposed REST service.

But it’s not the most efficient, flexible, or secure option. What it is, is simple. And that’s

why we started with it. Once you get the hang of it, cURL is extremely straightforward.

But CURL is soooooo 5 pages ago.

You Sold Me. Where Do I Sign?

Before we even get into the actual steps, we want to clarify something: Nothing

changes in SolarWinds. The alert trigger action can remain exactly the same, because

we’re still just passing variables to a PowerShell script, and letting the script do all the

heavy lifting.

HOWEVER… because this is a learning experience and not exactly real life, we ARE

going to change things a little.

1.	 First, copy the alert from the last section. Once again, this is so you can look

back at how this whole thing has progressed.

2.	 	In the SolarWinds alert trigger action change MySlackOrionAlertSender.ps1 to

MySlackOrionAlertSender2.ps1

That’s it for SolarWinds. Everything else will be taken care of in the script:

3.	 	Go to C:\sw_tools

4.	 	Create a new file: MySlackOrionAlertSender2.ps1 (of course!)

5.	 Enter the following:
Define params to keep it clean when called by the Orion Alert
param([string[]]$Caption,[string]$Status,[string]$De-
tails,[string]$Node,[string]$AckUrl)
Set the webhook endpoint on Slack, and format a tight datestamp
$webhook = ‘https://YOUR _ WEBHOOK _ URL

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

35

$ftime = Get-Date -format “yyyy.MM.dd@HH:mm:ss”
Set an emoji for specific status
$emoji = ‘’ # default empty
switch ($Status)
	 {
		 Unknown {$emoji = ‘:thought _ balloon: ‘}
		 Up {$emoji = ‘:green _ heart: ‘}
		 Down {$emoji = ‘:poop: ‘}
	 }
build the JSON payload for the web request
$slackJSON = @{}
$slackJSON.channel = ‘#labbot’
$slackJSON.username = ‘OrionBot’
$slackJSON.icon _ url = ‘http://cool.example.com/slack/orionbot/img/
particles.png’

Munge together the Slack formatted text string, (See Slack API
page for details)
$slackJSON.text = $emoji + $ftime + ‘- ’̀ + $Caption + ‘̀ status
changed to *’ + $Status + ‘*’ + “̀ n” + ‘View: <’ + $Details + ‘|De-
tails>, <’ + $Node + ‘|Node>’ + “̀ n” + ‘To acknowledge click <’ +
$AckUrl + ‘|here>’

Build the web request
$webReq=@{
 Uri = $webhook

 ContentType = ‘application/json’
	 Method = ‘Post’
 body = ConvertTo-Json $slackJSON
}

Send it to Slack

Invoke-WebRequest @webReq

Uncomment the following line(2) to debug the final send
write-output $slackJSON

write-output $slackJSON.body

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

36

6.	 	Next, let’s break down the key elements of this script. Even though it’s fairly well

commented, this is a teaching guide so we’re not going to leave you hanging

with just “look through the code and it will all make sense” (even though we

hope it actually does!)

•	param([string[]]$Caption,[string]$Status,[string]$De-

tails,[string]$Node,[string]$AckUrl) – This is where we define our variables.

Why should we bother? Ask Corey Adler (https://thwack.solarwinds.com/

community/solarwinds-community/geek-speak_tht/blog/2015/12/01/

moar-coding-tip-and-lots-of-caps)

•	$webhook = ‘https://YOUR_WEBHOOK_URL – This is your Slack webook

•	$ftime = Get-Date -format “yyyy.MM.dd@HH:mm:ss” – This gets the cur-

rent time (you’ll see how it fits in later)

•	$emoji = ‘’ – This (and the lines that follow it) set up a cute little enhance-

ment we couldn’t do with cURL. It will set an emoji icon to match the status.

A good status gets you a green heart. A bad status looks like poop (literally!),

and an unknown status is a thought bubble.

•	$slackJSON = @{} – This sets up the array that will hold all the JSON vari-

ables. You’ll see it later. Right now, this is just another declared variable.

•	$slackJSON.channel = ‘#labbot’ – The Slack channel the alert will show up in.

•	$slackJSON.username = ‘OrionBot’ – The Slack user name the message will

appear to come from.

•	$slackJSON.icon_url = ‘http://cool.example.com/slack/orionbot/img/par-

ticles.png’ – As with all the cURL examples, this is the good old avatar that

will show up as the Slack user’s image.

•	$slackJSON.text = – This block sets up the content of the actual alert message.

•	+ $emoji – The emoji for the status (that we set up earlier in the script)

•	+ $ftime – The current time of the alert (again, set up earlier)

•	+ ‘- ̀ ’ + $Caption – The name of the device, interface, etc.

https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2015/12/01/moar-coding-tip-and-lots-of-caps
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2015/12/01/moar-coding-tip-and-lots-of-caps
https://thwack.solarwinds.com/community/solarwinds-community/geek-speak_tht/blog/2015/12/01/moar-coding-tip-and-lots-of-caps

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

37

•	+ ‘̀ status changed to *’ + $Status – The literal words “Status changed to *”

plus the status (down, up, unknown, etc.)

•	+ ‘*’ + “̀ n” + ‘View: <’ + $Details + ‘|Details>, <’ + $Node + ‘|Node>’ – An

asterisk (*) to finish off the status line, plus clickable links for Alert Details

and Node Details.

•	+ “̀ n” + ‘To acknowledge click <’ + $AckUrl + ‘|here>’ – A hard return plus

a clickable link for the alert acknowledge.

•	$webReq=@{ – This puts everything together into a nice neat usable bundle.

The URL plus the type of content and method (json and POST, respectively),

and the text of the message converted into JSON format.

•	Invoke-WebRequest @webReq – Believe it or not, everything up until now

has been setup. This starts the ACTUAL command.

•	# write-output $slackJSON – This section is for error checking. If things

aren’t working, you can uncomment these two lines to see on screen what

is going on.

7.	 	Now test the code. At the regular old DOS prompt, type the following command:

Powershell.exe -File C:\sw _ tools\MySlackOrionAlertSender2.ps1
CapptainMal StillOffTheAir http://www.google.com http://www.xkcd.
com http://www.solarwinds.com

You should now see the following message in Slack:

HelloScript, we see what you did there.

8.	 Assuming everything works, you are done. Why? Because we already changed

the shim in the alert trigger area.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

38

Troubleshooting

The most likely problems you’ll encounter will be, wait for it, PowerShell syntax errors.

No biggie, just fix them. Ok, seriously, use Google to find the appropriate TechNet and

stackoverflow articles, tweak and test from the command line and you’re all set. Even

if you’re currently a config jockey by day, programming is fun, and unavoidably neces-

sary to keep a gig as we move to a software defined infrastructure. Experimentation,

even if you’re new to programming won’t hurt a bit.

Now then if you really want to make it easy, check out the end of the Advanced REST

and Orion Alert Integration section for an example of using modularity and reuse to

reduce script errors. Now scat!

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

39

THE CASE AGAINST ORION’S NATIVE GET OR POST REQUEST ACTION

So what do we have against the built-in POST action?

Orion ships with another built-in action that’s technically the quickest way to send

alerts to Slack. You don’t need to install cURL, string escapes are easier and you can

still use Orion variables. But with easy comes limited troubleshooting and more main-

tenance. You can’t do authentication, there’s no error reporting, (see reading the Ac-

tion log above), and no logic. That means if you have more than one, you’ll have to

configure each one individually. You can’t change behavior in a script and you can’t

interactively debug in a command window.

But for the sake of completeness, here’s how to do it. You’ll initially find it easy, might

like it and it may perfectly suit your needs. But you’ll be a bad person for using it, and

worse, a less accomplished geek.

First, edit the Trigger Actions section of an Alert, and add a “Send a GET or POST Re-

quest to a Web Server” Action:

Click “Configure Action” and configure the action. Give it a name, paste your web-

hook into the URL text box, select “Use HTTP POST,” and then post the JASON you

want to send to Slack in the “Body to POST” box.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

40

Save your changes and test using the Alert Action test button.

And voila! It’s working, you’re all done. Call it a day and knock off early. Unless

this happens:

What caused this? You may never know. If it’s a transport or HTTP issue you

will get details in the log file, but if there is any issue with your JSON, you’ll

only get “HTTP 500 you stink, go away,” and won’t be able to quickly debug

the payload. This is especially true with the really cool messages we’re sure

you’ll come up with using the very flexible Slack formatting options.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

41

Ok, so how about a compromise rather than wholesale condemnation of this meth-

od? If you want to set up a basic, quick alert to a Slack channel that you can use to

get your team interested and your boss to give you time to configure rich integra-

tion, it’s an ok way to start.

There, we said it. Now, on to the advanced stuff.

Troubleshooting

There’s not really a lot of options- that’s the good and the bad. If you get a “Failed

to execute HTTP Request” message when you test it, look for transport and HTTP

protocol issues in

C:\ProgramData\Solarwinds\Logs\Orion\ActionsExecutionAlert.log.

For anything else, you’ll just have to experiment with the “Body of POST” JSON and

cross your fingers.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

42

ADVANCED REST AND ORION ALERT INTEGRATION
Aw yeah.

ROBUST & MAINTAINABLE CODE

Like it or not, we’re talking about code here, people. Scratch that. Like it people, we’re

talking about code! Code is how we manage infrastructure by putting logic onto disk

so we don’t have to constantly reconfigure everything. It’s also how we go beyond

basic layouts and simple data integration, to advanced integration. We get rich data

that tells the admin on the other end of the notification everything they need to quick-

ly close tickets. Who likes to quickly close complex tickets? You!

Consider these possibilities using Execute Program Alert Actions and Power-

Shell scripts:

In the first example of our guide you configured a direct cURL integration:

The Orion Execute Program Alert Action called cURL on the command line and cURL

sent an escaped, formatted POST directly to Slack. The downside is you’re stuffing a

lot of long parameters on the DOS command line and all edits must happen in the

Alert config screen.

Now consider what happens when you instead create a script that sends the alert

to Slack:

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

43

In this scenario, we have an extra “thing” to manage, but management is easier. First

the configuration of the Run Command Alert Action is much, much easier to main-

tain. {Path to PowerShell} {path to script} {parameters from Orion variables}. That’s

much easier for development. Second, notice that you can have multiple Alert Actions

call the same script. Maybe you want to pass different variables based on the type of

alert, (Node, Interface, Application, Virtual Machine etc.), but only maintain one script

that does the actual send to Slack. Aaaahh.

As an added bonus, you set up your alerts only once in Orion, and then fiddle with

the presentation details as much as you like, easily. Instead of editing Alert Actions,

you edit a script, save, test from the command line, and you’re done. Oooooh, Ahhhh.

You can also do this:

Reuse is a beautiful thing. You can configure the Alert Action only once then reuse

it for many Alerts. It’s a great way to do Alert escalation, thresholding and more.

Because you can pass Alert instance data in the Alert Action config to the script,

the script can reformat based on the Alert ID, rather than the Action definition.

Good golly Miss Molly.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

44

A FULLY ARMED AND OPERATIONAL BATTLE STATION

The real beauty of code comes in cleaning up the quick-typed spoor of your first

version to produce something that’s not brittle. It happens when you realize what

you can do with Orion Alerts and Slack. For example, what about this?

Don’t freak out! We’ll explain what’s going on here. You may find you want to send

certain alerts to specific Slack channels to reach different audiences. You may end up

with lots of Alerts using differentiated Alert Actions based on advanced rules. You may

have a selection of specialized sender scripts that contain specific advanced logic or

formatting, used in different situations. And in those cases the diagram above is actu-

ally pretty straightforward.

This design takes advantage of a small number of PowerShell scripts and lots of reuse

to scale out as far as your inspiration and perspiration take you. For example, you can

name your channels in a common config script, and set properties for their web-

hooks. Then if you need to change the webhook, you set it in a single file, and every

other integration gets updated. Want to reuse complex logic as a function across mul-

tiple PowerShell scripts? W00t, you can do that too, in time for lunch.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

45

IT’S WAY EASIER THAN YOU THINK

Enough telling, more showing. Let’s walk through a setup using nothing but Solar-

Winds Orion, and Slack and you’ll see what we’re nattering on about.

First, pick a folder on the Orion poller where the alert runs and create three files.

Two are PowerShell .ps1 scripts and the other is a JSON config .json file. SlackSu-

perSenderScript.ps1 has an include for SlackAlerterCommon.ps1 which knows

how to read SlackAlerterSettings.json. Is your head exploding yet? Of course not,

because this is easy now that you’ve followed this oh-so-handy guide.

Why did we put the config in JSON instead of XML or text, well let’s take a look at

SlackAlerterSettings.json, while you copy and paste it onto your server. (Filenames

are important here but PowerShell will helpfully barf hints if you make a typo.)

{	 “channels” : [
		 { “labbot” : {
			 “webhook” : “https://hooks.slack.com/services/
T09HUKJH4/B0L6G78HH/jPHdT9gbuMsoq4cCnS5G3xnU”,
			 “username” : “OrionBot”
		 }},
		 { “foobarbaz” : {
			 “webhook” : “kjshfkjsdf/sdksjdhfsdaf/sadfdfsdsdfdsaf”,
			 “username” : “OrionBot”
		 }}
],
	 “icon _ url” : “http://cool.example.com/slack/orionbot/img/
particles.png”
}

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

46

First, it defines an array of “channels,” named “labbot” and “foobarbaz.” Each has

properties like the webhook and username to use. This means you can have as

many webhooks as you want shared in many scripts, with single point update. Yea

verily. And second, it also has a global “icon_url” property, and I’ll bet you can guess

what that’s for.

So how do we read this file? Easy, we add our second file, SlackAlerterCommon.ps1,

which you can also copy from right here and tweak.

Load the config file into an global object and add a couple of convenience vaial-

bles, note you may need the fill path to the .json config file here too.

$OrionSlackConfig = Get-Content -Raw -Path SlackAlerterSettings.json
| ConvertFrom-Json
$SlackChannels = $OrionSlackConfig.channels
$ftime = Get-Date -format “yyyy.MM.dd@HH:mm:ss”
function NewSlackPayload($channel, $username, $icon _ url)
{
	 # Creates the payload object as a hashtable
	 $slackJSON = @{
		 channel = ‘#’ + $channel
		 username = $username
		 icon _ url = $icon _ url
		 text = $null
	 }
	 return $slackJSON
}
function GetStatusColor($status)
{
	 # Gets colors for Critical, Down, Unknown, Up, and Warning
status
	 switch ($status)
	 {
		 Unknown {return ‘#808080’}
		 Up {return ‘#008000’}
		 Warning {return ‘#FFFF00’}
		 Critical {return ‘#800000’}
		 Down {return ‘#FF0000’}
		 default {return “#808080”} # unknown
	 }
}

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

47

function SendToSlack($webhook, $payload)
{
	 # Build the web request and sends it off to Slack
	 $webReq=@{
		 Uri = $webhook
		 ContentType = ‘application/json’
		 Method = ‘Post’
		 body = ConvertTo-Json $payload -Depth 100
	 }

	 # Send it to Slack
	 Invoke-WebRequest @webReq
}

Remember this file is designed to be reused by all of your actual sender scripts and

offload the common work like making the config data available, building some base

objects to make life easier and less error prone and also does the actual work of

sending the data to Slack. Sorry cURL, there’s no place for you here–because you’re

one more layer to install and debug, that’s why.

So last we have the script that does the actual creation and formatting of the mes-

sage we’re sending to Slack. Notice it doesn’t have any configuration details needed

to send the message, the common file takes care of that for us. Everything here is

either receiving the parameters from the Orion Alert Action of formatting output.

Create one more file called SlackSuperSenderScript.ps1 and paste this in. Tweak if

needed for your system, like adding the full paths to the include file.

Define params to keep it clean when called by the Orion Alert and
allow for named passing rather than positional
Param(
 [string]$objectCaption,
 [string]$status,
 [string]$nodeDisplayName,
 [string]$detailsUrl,
 [string]$nodeUrl,
 [string]$ackUrl,
 [string]$alertTriggerCount,
 [string]$downTime
)

Include common config, loads the config .json to objects

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

48

This will work on your desktop as is, but you’ll want the full path to
this file in
production or Orion won’t be able to find it.
. .\SlackAlerterCommon.ps1

call a method in the common file to create the slack payload stub
$payload = NewSlackPayload “labbot” “OrionBot” $OrionSlackConfig.icon _ url

And now the magic of building JSON from hashtables in PowerShell. Look
how beautiful this is!
Use the Slack formatting guide for ideas https://api.slack.com/docs/
formatting and the attachments
guide for overall structure https://api.slack.com/docs/attachments.
$attach = @{
	 title = $objectCaption + ‘ status changed to ‘ + $status
	 title _ link = $alertUrl
	 color = GetStatusColor $status
	 fallback = $objectCaption + ‘ status changed to ‘ + $status + ‘ @’
+ $ftime
	 text = ‘<’ + $ackUrl + ‘|Acknowledge>’

	 fields = @(
		 @{
			 title = “Time”
			 value = $ftime
			 short = $true
		 },	
		 @{
			 title = “Node”
			 value = ‘<’ + $nodeUrl + ‘|’ + $nodeDisplayName + ‘>’
			 short = $true
		 },	
		 @{
			 title = “DownTime”
			 value = $downTime
			 short = $true
		 },	
		 @{
			 title = “Trigger Count”
			 value = $alertTriggerCount
			 short = $true
		 }
)
}

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

49

Add them to the Slack payload wrapped in an array
$payload.attachments = @($attach)

Un-comment the following line if you want to get the output of
the JSON on the command line for debug
ConvertTo-Json $payload -Depth 100 | write-output
Send it off using a reusable function in the include library
SendToSlack $SlackChannels.labbot.webhook $payload

We bet you’re getting the picture by now. Notice that all the icky, yucky and evil

URL escaping and other shenanigans are completely gone, and happily forgotten.

It’s easy to read and much easier to debug than one big file. And the best bit is if

you want to completely reformat other messages, you can just clone this one into

something completely different. For extra credit you might even pass the layout

definition in on the Alert Action and have multiple layouts in a single file. The possi-

bilities are endless.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

50

TIME TO TEST– HIT IT!

We’re almost done. The last step is to test it on the PowerShell command line thusly.

(Note we’re checking using incomplete parameter names but don’t have to type

them all out- another neat PowerShell trick.)

PS [Patrick.Hubbard]>.\SlackSuperSenderScript.ps1 -s “Down” -o
“MyBox”-ac “http://solarwinds.com” -nodeUrl “http://google.com
“ -nodeD “FooBar”-alert 200 -down 234

And what should happen is something like this over in your Slack channel:

Wowzers, look at all that slick Slack formatting. It’s using attachments to set a col-

ored bar for the status, includes an action header, and organizes the sub-elements

using fields. The cool thing is that this is not custom code in Slack, we’re just using

their online guide and hacking coolness on the fly. Also notice in the test above

that we’re passing named parameters into the script. This is a really helpful upgrade

when it comes to debugging, because positional parameters stink on ice and are

prone to bit rot.

If that worked for you, then you’re ready to complete the last step, configuring your

Alert Action. On your alert, create a new Execute External Program Action and give

it a cool name.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

51

Next paste in the following template into the Network path to external program box,

editing the path to your SlackSuperSenderScript.ps1 script:

Powershell.exe -File {script path on Orion poller server}
-objectCaption “${N=SwisEntity;M=Caption}” -status
“${N=SwisEntity;M=Status}” -nodeDisplayName “${N=SwisEntity;M=Node.
DisplayName}” -detailsUrl “${N=Alerting;M=AlertDetailsUrl}”
-nodeUrl “${N=SwisEntity;M=Node.DetailsUrl}” -ackUrl
“${N=Alerting;M=AcknowledgeUrl}” -alertTriggerCount
“${N=Alerting;M=AlertTriggerCount}” -downTime

“${N=Alerting;M=DownTime}”

Notice in this example that instead of trying to remember which parameter goes

where, we name all of them. Check the parms definition at the top of your script

and there they are ready for copy–paste. You can even stick a copy of this right in

your script file as a multi-line comment block.

Click add action, finish saving the parent Alert and you’re ready to test. For this one

we test by un-managing and re-managing an interface because we’re triggering on

status change. You’ll want to make sure your polling interval for your test interface is

2-3 minutes so you won’t sit forever. What should happen is this:

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

52

First the alert query fires and notices that you previously set it into unmanaged

which means for the poller it’s unknown. The side bar is gray just like the status icon

in Orion. Within a couple of minutes the poller fires and the status changes from

Unknown to Up, which causes the Alert to fire again and bada-bing-bada-boom:

You’re green again indicating it’s back up. If you happen to have the Slack mobile app

you’re super green:

Hopefully that wasn’t difficult at all and now everyone on your team is singing your

praises, buying your lunch and urging you to take a three day weekend. OK, probably

not, but one can dream.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

53

TROUBLESHOOTING

Assuming you got the above script to work from the first command line test, the

most likely issue you may encounter is fat fingering the Alert action script call or

selecting an incorrect SolarWinds Alert variable substitution. The quickest way to

check that is to test the template in Action using the Orion, Manage Alerts Test Ac-

tion button. You should see something like this:

It won’t be fully populated, but it will pick up most of the information from the test

interface you selected in the web test panel. Notice also that the <|{tag}> is visible

because if a URL is blank, Slack shows an empty control.

If that doesn’t work, then go back and paste the template into your PowerShell

command window and you should see something like this:

Notice that all the elements have been replaced with the SWIS API definitions for

each of the variables you’re passing to the script. It’s really handy when you get to

dozens of parameters where one is missing or out of place because you can test

both the Alert engine layer and the script->Slack layer. And who doesn’t like layers

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

54

A FINAL WORD ON ALERTS
LET’S BE SMART, HERE, PEOPLE!

This section has nothing to do with Slack, very little to do with SolarWinds, and ev-

erything to do with stopping the “noise” that everyone always complains about with

regard to monitoring and alerting.

Intelligent alerting is not about more programming, better macros, etc. It’s about

putting enough information into each alert that recipients understand what hap-

pened and why they received a message. With that information, they’re able to

communicate with you (the monitoring engineer) to fine tune the trigger, timing,

thresholds, etc.

It all starts with what information you include. At one end of the scale, you have the

ugly (but all too common) message:

Your server has had a problem. Please investigate and resolve if

necessary.

Sure thing, buddy. I’ll get right on that.

Better (but still not great) is what we usually see in most monitoring environments:

The interface “GigabitEthernet 0/1” on “ROUTER017” is down. A ticket

has been opened.

OK, at least we know what device and element it is, but it’s still a long way from

what any of us who have worked the helpdesk (or on-call) would consider to be

truly useful.

Let’s get an inventory of the information we’d like to see:

1.	 	The problem category (CPU, disk, network, up/down, Exchange™, etc.)

2.	 	The device affected

3.	 	The IP of the device affected

4.	 	The device vendor

5.	 	The device model

6.	 	The device OS

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

55

7.	 	The “owner” of the device (group, location, etc.)

8.	 	The sub-component affected

9.	 	The current status of the sub-component

10.		The threshold or trigger condition

11.	 	The monitoring server that detected the issue

12.		The time of the problem

13.		The time this alert was sent

14.		The name of alert that is sending this message

What that looks like might be something like this:

CPU ALERT: On ROUTER017 (IP: 10.199.3.5, Cisco 2851 running 12.4(13c),
RELEASE SOFTWARE (fc2)) the CPU is 98% and the threshold is 90%.
The NETOPS team has been informed via the ticket system and email.
This problem was detected by SWPOLLER05 at 3:17am. This alert was

sent at 3:18am. (ALERTNAME: NETOPS _ CPU _ CRIT)

These values are easily extracted from most monitoring systems. What they give

the recipient is a far more accurate view of what happened (even with something as

simple as a CPU alert).

And at the end of the day, that is what matters most. Not whether you send to Slack

or Jabber® or email. Not whether you have fancy icons and emoji’s.

What matters is that the right people get the right information in time to take deci-

sive action to correct (or better still, avert) a problem that will impact your environ-

ment, and therefore impact your business.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

56

WRAPPING UP
TAKE A MOMENT TO REFLECT

This has been an amazing journey for us, and we hope you feel the same sense of

excitement over the possibilities these techniques open up for you and your team.

You are now able to get data and interactive links out of SolarWinds and into a col-

laborative online communication platform like (Slack), where teams can be notified

on multiple devices (without having to set up multiple alerts); where you can create

“FYI” messages without wondering which team is actually working the ticket and

which have mentally decided they’re “NOT IT!”; and where you have an ongoing

historic archive of events and the conversations around those events that doesn’t

depend on email, log files, or locally-accessible ticket systems.

Looking beyond SolarWinds and Slack for just a moment, you’ve learned about

cURL and JSON and REST-ful function calls, and how to use those via PowerShell.

That’s not a bad set of skills to have, with or without the monitoring and workgroup

features.

WHAT’S NEXT?

Without really tipping our hand, we’ve opened the door for you to the wide world of

“ChatOps.” This is a whole new category of automation that allows teams to interact

with systems within a text-based communication system (like Slack) using “chatbots.”

Chatbots can do everything from sending information from remote systems into

the chat stream (which we’ve already done) to listening for commands and acting

on them in ways that are amusing (like “Find me a cute cat video”), informative (“Tell

me what the stock price is for a particular company” or “What is the CPU on SERV-

ER123”), to downright useful (“restart the IIS service on SERVER123”).

The only limits are your willingness to code, and your imagination.

DBA SURVIVOR GUIDE: YOUR FIRST 100 DAYS
THE INCOMPLETE GUIDE TO INTEGRATING SOLARWINDS ORION INTO SLACK

57

DEDICATIONS
“For Debbie. Caring for someone who loves their job is clearly more difficult than

caring for someone who hates it, but you have stood by me as I have savored this

dream job called “Head Geek.” Your patience and love have been a constant through

decades of time and generations of family. I still love you more than everything.”

–Leon

“To my wife Mandy, the greatest automation engineer I’ve ever known. I’m truly

honored to pass your white box tests.”

–Patrick

© 2016 SolarWinds Worldwide, LLC. All rights reserved.

SOLARWINDS, SOLARWINDS & Design, and ORION are the exclusive property of SolarWinds Worldwide, LLC.
All other trademarks are property of their respective owners. BR-1602

