
SolarWinds Technical Reference

network management simplified - solarwinds.com

Java Application Server
(SNMP) Template Pack

Configuring Java Virtual Machines for SNMP 1
Java Application Server (SNMP) Template 10

This document describes the template included
in the Orion APM Java Application Server
(SNMP) Template Pack.

2 APM Java Application Server Template

Copyright© 1995-2011 SolarWinds. All rights reserved worldwide. No part of this document may be reproduced by any means nor
modified, decompiled, disassembled, published or distributed, in whole or in part, or translated to any electronic medium or other
means without the written consent of SolarWinds. All right, title and interest in and to the software and documentation are and shall
remain the exclusive property of SolarWinds and its licensors. SolarWinds Orion™, SolarWinds Cirrus™, and SolarWinds Toolset™
are trademarks of SolarWinds and SolarWinds.net® and the SolarWinds logo are registered trademarks of SolarWinds All other
trademarks contained in this document and in the Software are the property of their respective owners.
SOLARWINDS DISCLAIMS ALL WARRANTIES, CONDITIONS OR OTHER TERMS, EXPRESS OR IMPLIED, STATUTORY OR
OTHERWISE, ON SOFTWARE AND DOCUMENTATION FURNISHED HEREUNDER INCLUDING WITHOUT LIMITATION THE
WARRANTIES OF DESIGN, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL SOLARWINDS, ITS SUPPLIERS OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, WHETHER
ARISING IN TORT, CONTRACT OR ANY OTHER LEGAL THEORY EVEN IF SOLARWINDS HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
Microsoft® and Windows 2000® are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.
Graph Layout Toolkit and Graph Editor Toolkit © 1992 - 2001 Tom Sawyer Software, Oakland, California. All Rights Reserved.
Portions Copyright © ComponentOne, LLC 1991-2002. All Rights Reserved.
Document Revised: 05/16/2011

APM Java Application Server Template 1

network management simplified - solarwinds.com

The Orion APM Java application Server (SNMP) template allows you to monitor vital statistics from Java
Virtual Machines (JVM). Before assigning the template to a node with a JVM you want to monitor, you must
configure the target JVM to accept SNMP queries.

Configuring Java Virtual Machines for SNMP

The sections below discuss how to configure JVM servers for SNMP monitoring including those that are
embedded with Apace Tomcat, JBoss, Glassfish, IBM Websphere, and Oracle Weblogic. Configuration
instructions are given for both Linux and Microsoft Windows operating systems.

• Configuring a Standalone Java Virtual Machine

• Configuring Apache Tomcat (tested on version 7.0)

• Configuring JBoss (tested on versions 5.0.1, 5.1, and 6.0)

• Configuring GlassFish (tested on version 3.1)

• Configuring IBM WebSphere (tested on version 3.1)

• Configuring Oracle WebLogic (tested on version 10.3.4.0)

Configuring a Standalone Java Virtual Machine
Windows

1. Download the JDK from the Oracle website:
http://www.oracle.com/technetwork/java/javase/downloads/index.html (tested on JDK SE 6, update
version 24).

2. Install the JDK.

3. On the license agreement page, read and accept the license and the click Next.

4. Click Change to change the installation directory to C:\Program Files\Java\jdk1.6.0_24, and then
click OK.

5. Click Next.

6. Click Finish to exit from the installer.

7. Add a variable to the system with its path pointing to the JDK installation folder. For example:

Variable name: JAVA_HOME
Variable value: C:\Program Files\Java\jdk1.6.0_24

Note: If you want to run Java commands from the command line, you should add the JDK installation
path to the PATH variable.

8. Navigate to the %JAVA_HOME%\jre\lib\management folder.

http://www.oracle.com/technetwork/java/javase/downloads/index.html�

2 APM Java Application Server Template

9. Rename the snmp.acl.template file to snmp.acl. Edit snmp.acl by replacing its content with the
following:
acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost, apm-server
 }
}

Where apm-server is the hostname of your APM server.

10. Grant access to the snmp.acl file only for the Administrator. To grant access only for the Administrator,
refer to this topic at the following location:
http://download.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html

Linux

1. Download the JDK from the Oracle website:
http://www.oracle.com/technetwork/java/javase/downloads/index.html (tested on JDK SE 6, update
version 24).

2. Unpack and run the JDK. In this case, the JDK was installed into the /usr/java/jdk1.6.0_24 folder.

3. Move this folder to /usr/local.

4. In the /usr/local/ directory, create a symbolic link to jdk1.6.0_24 named Java. Now the JDK is
installed in /usr/local/jdk1.6.0_24 and linked to /usr/local/java.

5. Add the /usr/local/java/bin folder to the system path. (If it is only for your account, add it in
.bash_profile file in your home directory). In Slackware, it should be in the .profile file. To make it
a system wide environment, add it in the /etc/profile.

6. Edit a line in .bash_profile to be similar to: PATH=$PATH:$HOME/bin:/usr/local/java/bin. The
path will be automatically set at boot time. To set the path immediately, use the command:
$ export PATH=$PATH:/usr/local/java/bin

7. You can call java directly in your shell:
$ java –version
java version "1.6.0_24"
Java(TM) SE Runtime Environment (build 1.6.0_24-b04)
Java HotSpot(TM) 64-Bit Server VM (build 14.3-b01, mixed mode)

8. Add a variable to the system with the path pointing to the JDK installation folder.

9. Add the following lines to the /etc/profile file. Syntax dependencies may be different in various
Linux distributions. This example is shown for the CentOS system:

export JAVA_HOME=/usr/java/jdk1.6.0_24

export PATH=$PATH:/usr/java/jdk1.6.0_24

To set this immediately, run the export commands in your shell. Or, logout then log back in to your
system.

10. Go to the $JAVA_HOME/jre/lib/management folder and rename the snmp.acl.template file to
snmp.acl.

http://download.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html�
http://www.oracle.com/technetwork/java/javase/downloads/index.html�

APM Java Application Server Template 3

network management simplified - solarwinds.com

11. Edit snmp.acl by removing all lines and writing the following:

acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost, apm-server
 }
}

Where apm-server is the hostname of your APM server.

12. Grant access to the snmp.acl file only for the root user. Run the following commands as the root user
in your shell:
chown root.root $JAVA_HOME/jre/lib/management/snmp.acl
chmod 600 $JAVA_HOME/jre/lib/management/snmp.acl

Testing a Standalone JVM in Linux

You can test that your JVM can respond to SNMP queries by adding
-Dcom.sun.management.snmp.port=1161 -Dcom.sun.management.snmp.interface=0.0.0.0 to the
java command line.

Example:

java -Dcom.sun.management.snmp.port=1161 -Dcom.sun.management.snmp.interface=0.0.0.0
some_java_applet

In another window/shell, run the following command to test SNMP and the JDK configurations:
snmpwalk -v 2c -c public 127.0.0.1:1161 1.3.6.1.4.1.42.2.145.3.163.1.1.2.11

The command should return a value similar to this:

SNMPv2-SMI::enterprises.42.2.145.3.163.1.1.2.11.0 = Counter64: 4803352

Configuring Apache Tomcat (tested on version 7.0)
Windows Service

1. Open Tomcat configuration: Start > All Programs > Apache Tomcat > Configure Tomcat.

2. Open the Java tab, and then add the following lines to the Java Options box:
-Dcom.sun.management.snmp.port=1161
-Dcom.sun.management.snmp.interface=0.0.0.0

3. Click Apply.

4. Go to the Windows Services console.

5. Right-click the Apache Tomcat service.

6. Click Properties.

7. Click the Log On tab, and then select Log on as this account.

8. Click Browse, find the user “Administrator” and type the Administrator password twice.

9. Click OK.

10. In the Tomcat Configuration window, return to the General tab, and then start the service.

4 APM Java Application Server Template

Windows Command Line

1. Open the file %TOMCAT_HOME%\bin\catalina.bat and add the following lines into the Debug, Run
and Start sections (where %TOMCAT_HOME% is the path to your Tomcat installation):

set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"

…
:doDebug
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"
shift
…
:doRun
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"
shift
…
:doStart
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"
shift
…

2. Run %TOMCAT_HOME%\bin\startup.bat to start Tomcat.

Linux

1. Open $TOMCAT_HOME/bin/catalina.sh and then add the following lines into Debug, Run and Start
sections (where %TOMCAT_HOME% is the path to your Tomcat installation):

JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
…
if ["$1" = "debug"] ; then
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
 if $os400; then
…
elif ["$1" = "run"]; then
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
 shift
…
elif ["$1" = "start"] ; then
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
 JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
 if [! -z "$CATALINA_PID"]; then
…

3. Run $TOMCAT_HOME/bin/startup.sh command to start Tomcat.

APM Java Application Server Template 5

network management simplified - solarwinds.com

Configuring JBoss (tested on versions 5.0.1, 5.1, and 6.0)
Windows Service

1. Edit %JBOSS_HOME%\bin\run.bat by adding the following lines (where %JBOSS_HOME% is the path to
your JBoss installation):

set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"

…
rem Setup JBoss specific properties
set JAVA_OPTS=-Dprogram.name=%PROGNAME% %JAVA_OPTS%
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"
…

4. Register JBoss as a service by running: %JBOSS_HOME%\bin\service.bat –install

5. Go to the Windows Services console

6. Right-click JBoss Application Server service.

7. Click Properties.

8. Click the Log On tab and then select Log on as this account.

9. Click Browse, find the user “Administrator,” and then type the Administrator password twice.

10. Click OK.

11. Start the JBoss service.

Windows Command Line

1. Edit %JBOSS_HOME%\bin\run.bat by adding the following lines (where %JBOSS_HOME% is the path to
your JBoss installation):

set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"set
"JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"

…
rem Setup JBoss specific properties
set JAVA_OPTS=-Dprogram.name=%PROGNAME% %JAVA_OPTS%
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTS=%JAVA_OPTS% -Dcom.sun.management.snmp.interface=0.0.0.0"
…

2. Start JBoss by running %JBOSS_HOME%\bin\run.bat.

6 APM Java Application Server Template

Linux

1. Edit $JBOSS_HOME/bin/run.sh by adding the following lines (where $JBOSS_HOME$ is the path to your
JBoss installation):

JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
…
Setup JBoss specific properties
JAVA_OPTS="${JAVA_OPTS:+$JAVA_OPTS -Dprogram.name=$PROGNAME}"
JAVA_OPTS="${JAVA_OPTS:--Dprogram.name=$PROGNAME}"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.port=1161"
JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.snmp.interface=0.0.0.0"
…

2. Run JBoss by running $JBOSS_HOME/bin/run.sh.

Configuring GlassFish (tested on version 3.1)
1. Run the GlassFish Application Server.

2. Open a web browser and then navigate to: http://hostname:4848 where hostname is the name of your
GlassFish server.

3. In the left panel, click Configurations: server-config.

4. In the main window, click JVM settings.

5. Click the JVM Options tab.

6. Click Add JVM Option and then type -Dcom.sun.management.snmp.port=1161 in the blank
field.

7. Click Add JVM Option and then type -Dcom.sun.management.snmp.interface=0.0.0.0 in the
blank field.

8. Click Save.

9. Restart the GlassFish server.

Configuring IBM WebSphere (tested on version 3.1)
IBM WebSphere uses its own JDK, installed at %WEBSHERE_HOME%\java (where %WEBSHERE_HOME% is the
path to your WebSphere installation).Configure the IBM JDK in the following manner:

1. Go to the $JAVA_HOME/jre/lib/management folder.

2. Rename the snmp.acl.template file to snmp.acl.

3. Edit snmp.acl by replacing its content with the following:
acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost, apm-server
 }
}

Where apm-server is the hostname of your APM server.

http://hostname:4848/�

APM Java Application Server Template 7

network management simplified - solarwinds.com

4. Grant access to the snmp.acl file only for the root user. Run the following commands as the root user
in your shell:
chown root.root $JAVA_HOME/jre/lib/management/snmp.acl
chmod 600 $JAVA_HOME/jre/lib/management/snmp.acl

5. Run the IBM WebSphere Application Server.

6. Open a web browser and then navigate to: https://hostname:9043 where hostname is the name of the
IBM WebSphere server.

7. In the left panel, click Expand Servers and Server types.

8. Click WebSphere Application Servers.

9. In the main window, click your server.

10. In the Server Infrastructure section, expand Java and Process Management.

11. Click Process Definition.

12. In the Additional Properties section, click Java Virtual Machine.

13. In Generic JVM Arguments, add the following:
-Dcom.sun.management.snmp.port=1161 -Dcom.sun.management.snmp.interface=0.0.0.0

14. Click OK.

15. Click, Save and then click OK.

16. Click Save.

17. Restart the IBM WebSphere Application Server.

Configuring Oracle WebLogic (tested on version 10.3.4.0)
Windows

Oracle WebLogic uses its own JDK installed in %MIDDLEWARE_HOME%\jdk* (where %MIDDLEWARE_HOME% is
the path to your WebLogic installation).

1. Go to the $JAVA_HOME/jre/lib/management folder

2. Rename the snmp.acl.template file to snmp.acl.

3. Edit snmp.acl by replacing its content with the following:
acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost, apm-server
 }
}

Where apm-server is the hostname of your APM server.

4. Grant access to the snmp.acl file only for the Administrator. To grant access only for the
Administrator,see: http://download.oracle.com/javase/6/docs/technotes/guides/management/security-
windows.html

https://hostname:9043/�
http://download.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html�
http://download.oracle.com/javase/6/docs/technotes/guides/management/security-windows.html�

8 APM Java Application Server Template

5. Edit the following file:
%MIDDLEWARE_HOME%\C:\Oracle\Middleware\user_projects\domains\<your_domain>\bin\start
WebLogic.cmd

by adding the lines:

set "JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.sun.management.snmp.interface=0.0.0.0"

The result should resemble:
…
call "%DOMAIN_HOME%\bin\setDomainEnv.cmd" %*
set "JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.sun.management.snmp.port=1161"
set "JAVA_OPTIONS=%JAVA_OPTIONS% -Dcom.sun.management.snmp.interface=0.0.0.0"
set SAVE_JAVA_OPTIONS=%JAVA_OPTIONS%
…

WARNING: This file is created by the Configuration Wizard. Your changes to this script will be lost the
next time you use the configuration wizard.

6. Restart WebLogic Server.

Linux

Oracle WebLogic uses its own JDK which in $MIDDLEWARE_HOME/jdk* (where $MIDDLEWARE_HOME is the
path to your WebLogic installation).

1. Go to the $JAVA_HOME/jre/lib/management folder.

2. Rename the snmp.acl.template file to snmp.acl.

3. Edit snmp.acl by replacing its content with the following:

acl = {
 {
 communities = public, private
 access = read-only
 managers = localhost, apm-server
 }
}

Where apm-server is the hostname of your APM server.

4. Grant access to the snmp.acl file only for the root user. Run the following commands as the root user
in your shell:
chown root.root $JAVA_HOME/jre/lib/management/snmp.acl
chmod 600 $JAVA_HOME/jre/lib/management/snmp.acl

APM Java Application Server Template 9

network management simplified - solarwinds.com

5. Edit the following file:
$MIDDLEWARE_HOME/user_projects/domains/<your_domain>/bin/startWebLogic.sh

by adding the lines:

JAVA_OPTIONS="$JAVA_OPTIONS -Dcom.sun.management.snmp.port=1161"
JAVA_OPTIONS="$JAVA_OPTIONS -Dcom.sun.management.snmp.interface=0.0.0.0"

The result should resemble:
…
. ${DOMAIN_HOME}/bin/setDomainEnv.sh $*
JAVA_OPTIONS="$JAVA_OPTIONS -Dcom.sun.management.snmp.port=1161"
JAVA_OPTIONS="$JAVA_OPTIONS -Dcom.sun.management.snmp.interface=0.0.0.0"
SAVE_JAVA_OPTIONS="${JAVA_OPTIONS}"
…

WARNING: This file is created by the Configuration Wizard. Your changes to this script will be lost the
next time you use the configuration wizard.

6. Restart the WebLogic Server.

10 APM Java Application Server Template

Java Application Server (SNMP) Template

This template assesses the overall performance of Java Application Servers by using SNMP protocol. The
following application servers are supported: Apache Tomcat, JBoss, GlassFish, IBM WebSphere and
Oracle WebLogic.

Prerequisites: SNMP enabled on the operating system. Target JVM configured to allow SNMP queries.
For more information, see "Configuring Java Virtual Machines for SNMP" on page 1.

Note: This template is configured to send SNMP requests on port 1161.

Credentials: None (uses the SNMP public string assigned to the node).

Monitored Components

Some components may not have preset warning or critical threshold values. You can add your own
threshold limits as necessary. For more information, see
http://knowledgebase.solarwinds.com/kb/questions/2415.

Classes Loaded Count

Indicates the number of classes currently loaded in the JVM.

For more information, reference the following Java method:
java.lang.management.ClassLoadingMXBean.getLoadedClassCount()

Classes Total Loaded Count

Indicates the number of classes that have been loaded since the JVM was started.

For more information, reference the following Java methods:
java.lang.management.ClassLoadingMXBean

getTotalLoadedClassCount()

Classes Unloaded Count

Indicates the number of classes that have been unloaded since the JVM was started.

For more information, reference the following Java method:
java.lang.management.ClassLoadingMXBean.getUnloadedClassCount()

Memory Pending Final Count

The approximate number of objects that are pending finalization. This should be as low as possible.

For more information, reference the following Java methods:
java.lang.management.MemoryMXBean.

getObjectPendingFinalizationCount()

Memory Heap Init Size (B)

The amount of memory (in bytes) that the JVM initially requests from the operating system for memory
management used for heap memory pools.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getHeapMemoryUsage()

getInit()

http://knowledgebase.solarwinds.com/kb/questions/2415�

APM Java Application Server Template 11

network management simplified - solarwinds.com

Memory Heap Used (B)

The amount of used memory (in bytes) from heap memory pools. This should be as low as possible.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getHeapMemoryUsage()

getUsed()

Memory Heap Committed (B)

The amount of memory (in bytes) committed by heap memory pools.

For more information, reference the following Java methods:
java.lang.management.MemoryMXBean.getHeapMemoryUsage().

getCommitted()

Memory Heap Max Size (B)

The maximum amount of memory (in bytes) for all heap memory pools.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getHeapMemoryUsage()

getMax()

Memory Non-heap Init Size (B)

The amount of memory (in bytes) that the JVM initially requests from the operating system for memory
management for non-heap memory pools.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getNonHeapMemoryUsage()

getInit()

Memory Non-heap Used (B)

The amount of used memory (in bytes) from non-heap memory pools. This should be as low as
possible.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getNonHeapMemoryUsage()

getUsed()

Memory Non-heap Committed (B)

The amount of memory (in bytes) committed by non-heap memory pools.

For more information, reference the following Java methods:
“java.lang.management.MemoryMXBean.”

getNonHeapMemoryUsage()

getCommitted()

12 APM Java Application Server Template

Memory Non-heap Max Size (B)

The maximum size of memory (in bytes) for all non-heap memory pools.

For more information, reference the following Java method:
java.lang.management.MemoryMXBean.getNonHeapMemoryUsage()

getMax()

Memory Garbage Collections Count

The number of collections that have occurred, as returned by
GarbageCollectorMXBean.getCollectionCount()

If garbage collection statistics are not available, this object is set to 0.

For more information, reference the following Java method:
java.lang.management.GarbageCollectorMXBean.getCollectionCount()

Memory Garbage Collection Time (Ms)

The approximate accumulated collection elapsed time (in milliseconds) since the Java virtual machine
has started. This object is set to 0 if the collection elapsed time is undefined for this collector.

For more information, reference the following Java method:
java.lang.management.GarbageCollectorMXBean.getCollectionTime()

Memory Pool Init Size (B)

The initial size of the memory pool. This counter shows statistics for the first memory pool. If another
pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getUsage()

getInit()

Memory Pool Used (B)

The amount of used memory in the memory pool. This counter shows statistics for the first memory
pool. If another pool needs monitoring, change the last digit of the OID. This should be as low as
possible.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getUsage()

getUsed()

Memory Pool Committed (B)

The amount of committed memory in the memory pool. This counter shows statistics for the first
memory pool. If another pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getUsage()

getCommitted()

APM Java Application Server Template 13

network management simplified - solarwinds.com

Memory Pool Max Size (B)

The maximum size of the memory pool. This counter shows statistics for the first memory pool. If
another pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getUsage()

getMax()

Memory Pool Peak Used (B)

The amount of used memory in the memory pool at the peak usage point. This counter shows statistics
for the first memory pool. If another pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getPeakUsage()

getUsed()

Memory Pool Peak Committed (B)

The amount of used memory in the memory pool at the peak usage point. This counter shows statistics
for the first memory pool. If another pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getPeakUsage()

getCommitted()

Memory Pool Peak Max Size (B)

The maximum size of the memory pool at the peak usage point. This counter shows statistics for the
first memory pool. If another pool needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.MemoryPoolMXBean.getPeakUsage()

getMax()

Threads Total Started Count

The number of threads created and started since the Java Virtual Machine started. This counter shows
statistics for the first thread. If another thread needs monitoring, change the last digit of the OID.

For more information, reference the following Java method:
java.lang.management.ThreadMXBean.getTotalStartedThreadCount()

Thread Instant Blocked Count

The number of times that this thread has blocked the “to enter” or “re-enter” monitor. This counter
shows statistics for the first thread. If another thread needs monitoring, change the last digit of the OID.

For more information, reference the following Java methods:
java.lang.management.ThreadMXBean.getThreadInfo(long,boolean)

getBlockedCount()

14 APM Java Application Server Template

Thread Instant Blocked Time (Ms)

The approximate accumulated elapsed time (in milliseconds) that a thread has blocked the “to enter” or
“re-enter” monitor since it has started, or since thread contention monitoring was enabled.

This object is always set to 0 if thread contention monitoring is disabled or not supported. This counter
shows statistics for the first thread. If another thread needs monitoring, change the last digit of the OID.
This should be as low as possible.

For more information, reference the following Java method:
java.lang.management.ThreadMXBean.getThreadInfo(long,boolean)

getBlockedTime()

Thread Instant Wait Count

This counter shows the number of times that this thread waited for notification. It also shows statistics
for the first thread. If another thread needs monitoring, change the last digit of the OID.

For more information, reference the following Java methods:
java.lang.management.ThreadMXBean.getThreadInfo(long,boolean).

getWaitedCount()

Thread Instant Wait Time (Ms)

The approximate accumulated elapsed time (in milliseconds) that a thread has waited for a monitor
through a “java.lang.Object.wait” method since it has started, or since thread contention monitoring was
enabled.

This object is always set to 0 if thread contention monitoring is disabled or not supported. It also shows
statistics for first thread. If another thread needs monitoring, change the last digit of the OID. This
should be as low as possible.

For more information, reference the following Java methods:
java.lang.management.ThreadMXBean.getThreadInfo(long,boolean)

getWaitedTime()

Runtime Input Arguments Count

This is the number of input arguments passed to the Java Virtual Machine.

For more information, reference the following Java method:
java.lang.management.RuntimeMXBean.getInputArguments()

Runtime Uptime (Ms)

This is the uptime of the Java virtual machine (in milliseconds). This is equivalent to
(System.currentTimeMillis() - jvmStartTimeMs).

For more information, reference the following Java methods:
jvmRTStartTimeMs.:

java.lang.management.RuntimeMXBean.getUptime()

APM Java Application Server Template 15

network management simplified - solarwinds.com

Compiler Time (Ms)

This gets the approximate accumulated elapsed time (in milliseconds) spent in compilation since the
Java virtual machine has started. If multiple threads are used for compilation, this value is the
summation of the approximate time that each thread spent in compilation. If compiler time monitoring is
not supported, then this object remains set at 0.

For more information, reference the following Java method:
java.lang.management.CompilationMXBean.getTotalCompilationTime()

	Configuring Java Virtual Machines for SNMP
	Configuring a Standalone Java Virtual Machine
	Configuring Apache Tomcat (tested on version 7.0)
	Configuring JBoss (tested on versions 5.0.1, 5.1, and 6.0)
	Configuring GlassFish (tested on version 3.1)
	Configuring IBM WebSphere (tested on version 3.1)
	Configuring Oracle WebLogic (tested on version 10.3.4.0)

	Java Application Server (SNMP) Template

